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Figure 1. ORTEP drawing of Li(ND3)4. Selected bond distances and 
angles are as follows: Li-N(I) = 2.488 (16) A; Li-N(2) = 1.984 (4) 
A; N(I)-D(I) = 0.970 (5) A; N(2)-D(l 1) = 0.985 (5) A; N(2)-D(12) 
= 0.976 (4) A; N(2)-D(13) = 1.018 (6) A; N(l)-Li-N(2) = 98.4 (5)°; 
N(2)-Li-N(2) = 117.9 (2)°; D(I)-N(I)-D(I) = 108.3 (4)°; D(II)-N-
(2)-D(12) = 109.7 (5)°; D(11)-N(2)-D(13) = 97.4 (6)°; D(12)-N-
(2)-D(13) = 108.0 (5)°. 

A did not. Next, the rigid-body constraints were replaced with 
fractional-coordinate soft constraints while all N-D bonds were 
held at 1.01 (3) A. This led to a solution having all but one D 
atom in chemically reasonable locations. Inclusion of data at 
higher d spacings from the 90° bank and evaluation of subsequent 
difference-Fourier maps led to a proper placement of the remaining 
D atom. A complete refinement of the structure, including ab­
sorption and neutron primary extinction corrections without the 
application of constraints, was then possible. Isotropic thermal 
parameters were refined, which led to a weighted residual (Rwp) 
of 4.66% for a combined refinement using both 148° and 90° 
banks of data. 

The three-dimensional drawing shown in Figure 1 shows that 
all ammonia molecules of an individual 7Li(ND3),, complex are 
coordinated to lithium. Therefore, there is not hydrogen bonding 
between these complexes in phase II. A most interesting aspect 
of this refinement is that one N atom bonds to the Li atom at 
a much longer distance (2.488 A) than the other three (1.984 A), 
so that the Li(ND3)4 complex has a distorted pyramidal shape. 
Therefore, this compound is perhaps better described by the 
formula 7Li(ND3^-ND3. The more weakly bound ND3 can 
provide some insight into the nature of the phase I-phase II 
transition that occurs at 82 K in Li(NH3),,. Upon warming, the 
weakly bound NH3 molecules may reorient or become dissociated 
from the tetraamine unit, which could drive an order-disorder 
phase transition, as has been suggested for the phase I-phase II 
transition.8 This structure determination for phase II permits 
band-structure and ab initio calculations to be undertaken and 
sets the stage for a similar refinement of the low-temperature 
antiferromagnetic phase III of 7Li(ND3)4. A full account of the 
structural refinement of phase II of 7Li(ND3),, will be published 
elsewhere.12 
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Recent studies have focused on the mammalian immune system 
as a source of highly specific, tailored catalysts. With transi­
tion-state analogues as haptens, it has been possible to elicit 
antibodies that promote a variety of chemical transformations, 
including ester and amide hydrolysis,1'2 photochemical processes,3 

a sigmatropic rearrangement,4 and a ^-elimination.5 We report 
here application of this strategy to the catalysis of a bimolecular 
[2 + 4] cycloaddition. 

The Diels-Alder reaction is one of the most important and 
versatile transformations available to organic chemists for the 
construction of complex natural products, therapeutic agents, and 
synthetic materials of all kinds. It involves concerted addition 
of a conjugated diene to an olefin to give a cyclohexene derivative. 
The bimolecular process has a large entropic barrier, with acti­
vation entropies typically in the range -30 to -40 cal K"1 mol"1.6 

Theoretical considerations suggest that it should be possible to 
pay for this substantial loss in translational and rotational entropy, 
and greatly accelerate the rate of reaction, by binding the two 
reactants together in an antibody combining site.7 

The transition state of a Diels-Alder cycloaddition is highly 
ordered, resembling product more closely than starting material.8 
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Figure 1. 

However, the reaction product is not an appropriate hapten for 
generating catalytic antibodies, since severe product inhibition 
would be expected to prevent efficient turnover of the catalyst. 
An alternate strategy is shown in Figure 1. Tetrachlorothiophene 
dioxide (TCTD) reacts with N-ethylmaleimide (NEM) to give 
an unstable, bicyclic intermediate 1 that subsequently extrudes 
SO2, to give a dihydrophthalimide as product.9 We reasoned that 
a stable analogue of the bicyclic adduct could elicit an antibody 
combining site with the proper shape for promoting the target 
reaction. As the final product does not closely resemble the 
transition state of the reaction, product inhibition would be 
minimized, allowing multiple turnovers of the catalyst. 

To test this notion, we prepared five high-affinity monoclonal 
antibodies against hapten 2,10'11 a stable analogue of bicyclic 
adduct 1. Because TCTD reacts with lysine residues on the surface 
of immunoglobulins, it was necessary to reduce the nucleophilicity 
of the amino groups by exhaustive reductive methylation with 
formaldehyde and sodium cyanoborohydride.12 TCTD was shown 
to be stable in the presence of the methylated antibodies which 
also retained high affinity for the hapten as judged by ELISA.13 

Chemical modification of immunoglobulins in this way is likely 
to be of general value, as it will allow reactive molecules like 
epoxides, Michael acceptors, or other alkylating agents to be 
employed as substrates for catalytic antibodies. 

The methylated antibodies were assayed at 25 0C for their 
ability to promote the Diels-Alder reaction between TCTD and 
NEM in aqueous buffer (20 mM MES, 100 mM NaCl, pH 6.0) 
containing 10% acetonitrile. Cycloadditions were followed by 
monitoring the disappearance of TCTD at 330 nm and by ana­
lytical reverse-phase HPLC.14 The products of the reaction, 
dihydro-A'-ethyltetrachlorophthalimide and the fully oxidized 
yV-ethyltetrachlorophthalimide, were isolated and characterized. 
Sulfur dioxide was detected independently by bleaching of ma­
lachite green at 617 nm. In the preliminary assays, one antibody 
(secreted by hybridoma 1E9) significantly accelerated the rate 
of reaction over the uncatalyzed process and was characterized 
further. 

Antibody 1E9 promotes the target reaction with multiple (>50) 
turnovers, and several lines of evidence demonstrate that the 
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observed catalysis is not artifactual. The process is first order 
with respect to immunoglobulin concentration, and its substrate 
specificity matches expectations based on hapten structure. Thus, 
TV-ethylmaleimide is a good substrate for the catalyst, but ma-
leimide is not. Also, the catalyzed reaction is strongly inhibited 
by compound 3,10 a close analogue of the hapten used for im­
munization. Preincubation of the antibody (5 ^M) with an 
equimolar amount of 3 stops the catalyzed reaction completely, 
even at concentrations of maleimide 103-fold greater than the 
concentration of inhibitor. Finally, methylated antibodies other 
than 1E9 fail to catalyze the cycloaddition. 

When initial rates with the antibody were measured as a 
function of NEM concentration, the concentration of TCTD being 
held constant, saturation kinetics were observed. At 0.61 mM 
TCTD, for example, the apparent values of Zc031 and (^m)NEM were 
4.3 ± 0.3 min"1 and 21 ± 4 mM, respectively. Low solubility of 
TCTD prevented determination of its Km value and, hence, the 
true &cat for the reaction. Nevertheless, comparison of (A:oat)app 
obtained at 0.61 mM TCTD with the second-order rate constant 
for the uncatalyzed cycloaddition (0.040 ± 0.007 min"1) yields 
an apparent effective molarity of at least 110 M/binding site. 
Because (&Cat)app is linearly dependent on TCTD concentration 
in this range, the true effective molarity must be substantially 
higher than this value. 

These experiments provide the first example of an antibody-
catalyzed Diels-Alder cycloaddition and demonstrate the feasi­
bility of using antibody technology to promote important non-
physiological reactions. Particularly noteworthy aspects of this 
study include the following: (1) the design of the hapten so as 
to minimize product inhibition, and (2) the use of chemically 
modified antibodies to permit study of reactive substrate molecules. 
We are currently extending these concepts to other [2 + 4] cy­
cloadditions. Tailored "Diels-Alderase" antibodies will be par­
ticularly valuable as tools for studying proximity effects in catalysis 
and for effecting regio- and stereoselective transformations in 
organic synthesis. 
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The polymerization of lipid bilayer vesicles (liposomes) is an 
effective method to enhance the long-term colloidal and chemical 
stability of the aqueous suspensions.1 A host of methods to 
polymerize vesicles have been described since the first reports in 
the early 1980s.2 It was soon recognized that the polymerization 
of two-component vesicles, where only one component was po-
lymerizable, resulted in phase separation of the lipids into poly­
meric and monomeric domains.3"5 The polymerizable lipids form 
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